• Introduction
  • Licensing
  • What's new in SMILE 2
  • Platforms and Wrappers
    • Java and jSMILE
      • Maven
    • Python and PySMILE
    • R and rSMILE
    • .NET and SMILE.NET
  • Hello, SMILE Wrapper!
    • Success/Forecast model
    • VentureBN.xdsl
    • The program
      • Hello.java
      • Hello.py
      • Hello.R
      • Hello.cs
  • Using SMILE Wrappers
    • Error handling
    • Networks, nodes and arcs
      • Network
      • Nodes
      • Arcs
    • Anatomy of a node
      • Node definition
      • Node value
      • Node evidence
      • Other node attributes
    • Multidimensional arrays
    • Input and Output
    • Inference
    • User properties
    • Submodels
    • Discrete nodes and numeric domains
      • Outcome intervals
      • Outcome point values
    • Canonical nodes
      • Noisy-MAX
      • Noisy-Adder
    • Influence diagrams
    • Dynamic Bayesian networks
      • Unrolling
      • Temporal definitions
      • Temporal evidence
      • Temporal beliefs
    • Continuous models
      • Equation-based nodes
      • Continuous inference
    • Hybrid models
    • Equations reference
      • Operators
      • Random Number Generators
      • Statistical Functions
      • Arithmetic Functions
      • Combinatoric Functions
      • Trigonometric Functions
      • Hyperbolic Functions
      • Logical/Conditional functions
      • Custom Functions
    • Diagnosis
      • Diagnostic roles
      • Observation cost
      • Diagnostic session
      • Distance and entropy-based measures
    • Learning
      • Learning network structure
      • Learning network parameters
      • Validation
  • Tutorials
    • Tutorial 1: Creating a Bayesian Network
      • Tutorial1.java
      • Tutorial1.py
      • Tutorial1.R
      • Tutorial1.cs
    • Tutorial 2: Inference with a Bayesian Network
      • Tutorial2.java
      • Tutorial2.py
      • Tutorial2.R
      • Tutorial2.cs
    • Tutorial 3: Exploring the contents of a model
      • Tutorial3.java
      • Tutorial3.py
      • Tutorial3.R
      • Tutorial3.cs
    • Tutorial 4: Creating the Influence Diagram
      • Tutorial4.java
      • Tutorial4.py
      • Tutorial4.R
      • Tutorial4.cs
    • Tutorial 5: Inference in an Influence Diagram
      • Tutorial5.java
      • Tutorial5.py
      • Tutorial5.R
      • Tutorial5.cs
    • Tutorial 6: Dynamic model
      • Tutorial6.java
      • Tutorial6.py
      • Tutorial6.R
      • Tutorial6.cs
    • Tutorial 7: Continuous model
      • Tutorial7.java
      • Tutorial7.py
      • Tutorial7.R
      • Tutorial7.cs
    • Tutorial 8: Hybrid model
      • Tutorial8.java
      • Tutorial8.py
      • Tutorial8.R
      • Tutorial8.cs
    • Tutorial 9: Diagnosis
      • Tutorial9.java
      • Tutorial9.py
      • Tutorial9.R
      • Tutorial9.cs
    • Tutorial 10: Structure learning
      • Tutorial10.java
      • Tutorial10.py
      • Tutorial10.R
      • Tutorial10.cs
  • Acknowledgments