Introduction
Licensing
What's new in SMILE 2
Platforms and wrappers
Python and PySMILE
Java and jSMILE
Maven
.NET and SMILE.NET
R and rSMILE
Hello, SMILE Wrapper!
Success/Forecast model
VentureBN.xdsl
The program
Hello.py
Hello.java
Hello.cs
Hello.R
Using SMILE Wrappers
Error handling
Identifiers
Networks, nodes and arcs
Network
Nodes
Node types
Creating and deleting nodes
Iterating over nodes
Node definition
Node value
Node evidence
Other node attributes
Arcs
Multidimensional arrays
Input and output
Inference
Target nodes
Noisy-MAX decomposition
Probability of evidence
Annealed MAP
Most probable explanation
Case manager
User properties
Submodels
Discrete nodes and numeric domains
Outcome intervals
Outcome point values
Canonical nodes
Noisy-MAX
Noisy-Adder
Influence diagrams
Dynamic Bayesian networks
Temporal node types
Temporal arcs
Unrolling
Temporal definitions
Temporal evidence
Temporal beliefs
Continuous models
Equation-based nodes
Continuous evidence
Continuous inference
Hybrid models
Diagnosis
Diagnostic roles
Observation cost
Diagnostic session
Distance and entropy-based measures
Learning
Learning network structure
Learning network parameters
Validation
Tutorials
Tutorial 1: Creating a Bayesian Network
Tutorial1.py
Tutorial1.java
Tutorial1.cs
Tutorial1.R
Tutorial 2: Inference with a Bayesian Network
Tutorial2.py
Tutorial2.java
Tutorial2.cs
Tutorial2.R
Tutorial 3: Exploring the contents of a model
Tutorial3.py
Tutorial3.java
Tutorial3.cs
Tutorial3.R
Tutorial 4: Creating the Influence Diagram
Tutorial4.py
Tutorial4.java
Tutorial4.cs
Tutorial4.R
Tutorial 5: Inference in an Influence Diagram
Tutorial5.py
Tutorial5.java
Tutorial5.cs
Tutorial5.R
Tutorial 6: Dynamic model
Tutorial6.py
Tutorial6.java
Tutorial6.cs
Tutorial6.R
Tutorial 7: Continuous model
Tutorial7.py
Tutorial7.java
Tutorial7.cs
Tutorial7.R
Tutorial 8: Hybrid model
Tutorial8.py
Tutorial8.java
Tutorial8.cs
Tutorial8.R
Tutorial 9: Diagnosis
Tutorial9.py
Tutorial9.java
Tutorial9.cs
Tutorial9.R
Tutorial 10: Structure learning
Tutorial10.py
Tutorial10.java
Tutorial10.cs
Tutorial10.R
Equations reference
Operators
Random Number Generators
Statistical Functions
Arithmetic Functions
Combinatoric Functions
Trigonometric Functions
Hyperbolic Functions
Logical/Conditional functions
Custom Functions
PySMILE reference
pysmile.AnnealedMapResults
pysmile.AnnealedMapTuning
pysmile.BayesianAlgorithmType
pysmile.CaseEvidenceInfo
pysmile.CaseEvidenceType
pysmile.DeMorganParentType
pysmile.DiagNetwork
pysmile.DiagResults
pysmile.DiscretizationInterval
pysmile.DocItemInfo
pysmile.EPISParams
pysmile.FaultInfo
pysmile.InfluenceDiagramAlgorithmType
pysmile.License
pysmile.MpeResults
pysmile.MultiFaultAlgorithmType
pysmile.Network
pysmile.NodeSensitivity
pysmile.NodeTemporalType
pysmile.NodeType
pysmile.ObservationInfo
pysmile.SMILEException
pysmile.SensitivityResults
pysmile.SingleFaultAlgorithmType
pysmile.TemporalInfo
pysmile.UnrollResults
pysmile.UserProperty
pysmile.ValueOfInfo
Learning
pysmile.learning.BayesianSearch
pysmile.learning.BkKnowledge
pysmile.learning.Curve
pysmile.learning.DataMatch
pysmile.learning.DataSet
pysmile.learning.EM
pysmile.learning.GreedyThickThinning
pysmile.learning.NaiveBayes
pysmile.learning.PC
pysmile.learning.Pattern
pysmile.learning.TAN
pysmile.learning.Validator
Acknowledgments