|
<< Click to Display Table of Contents >> Navigation: PySMILE reference > Learning > pysmile.learning.EM |
get_auto_slices(self: pysmile.learning.EM) -> bool
Gets whether auto slicing is enabled
get_eq_sample_size(self: pysmile.learning.EM) -> int
Gets equivalent sample size for EM
get_last_score(self: pysmile.learning.EM) -> float
Gets score after last EM run
get_randomize_parameters(self: pysmile.learning.EM) -> bool
Checks if EM should randomize parameters
get_relevance(self: pysmile.learning.EM) -> bool
Gets relevance factor for EM
get_seed(self: pysmile.learning.EM) -> int
Gets random seed for EM
get_uniformize_parameters(self: pysmile.learning.EM) -> bool
Checks if parameters should be uniformized before EM
learn(self: pysmile.learning.EM, data: pysmile.learning.DataSet, net: pysmile.Network, matching: List[pysmile.learning.DataMatch], fixed_nodes: List[int]) -> None
learn(self: pysmile.learning.EM, data: pysmile.learning.DataSet, net: pysmile.Network, matching: List[pysmile.learning.DataMatch], fixed_nodes: List[str]) -> None
learn(self: pysmile.learning.EM, data: pysmile.learning.DataSet, net: pysmile.Network, matching: List[pysmile.learning.DataMatch]) -> None
Performs EM learning
set_auto_slices(self: pysmile.learning.EM, value: bool) -> None
Enables or disables auto slicing
set_eq_sample_size(self: pysmile.learning.EM, size: int) -> None
Sets equivalent sample size for EM
set_randomize_parameters(self: pysmile.learning.EM, value: bool) -> None
Enables or disables random parameter initialization
set_relevance(self: pysmile.learning.EM, value: bool) -> None
Sets relevance factor for EM
set_seed(self: pysmile.learning.EM, seed: int) -> None
Sets random seed for EM
set_uniformize_parameters(self: pysmile.learning.EM, value: bool) -> None
Enables or disables parameter uniformization