pysmile.learning.DataSet

<< Click to Display Table of Contents >>

Navigation:  PySMILE reference > Learning >

pysmile.learning.DataSet

add_empty_record(self: pysmile.learning.DataSet) -> None

Adds an empty record to the dataset

add_float_variable(self: pysmile.learning.DataSet, id: str, missing_value: float) -> None
add_float_variable(self: pysmile.learning.DataSet, id: str) -> None

Adds a continuous variable

add_int_variable(self: pysmile.learning.DataSet, id: str, missing_value: int) -> None
add_int_variable(self: pysmile.learning.DataSet, id: str) -> None

Adds a discrete variable

discretize(self: pysmile.learning.DataSet, variable: int, algorithm: pysmile.learning.DataSet.DiscretizationAlgorithmType, intervals: int, state_prefix: str) -> List[float]

Discretizes continuous variables

find_variable(self: pysmile.learning.DataSet, variable_id: str) -> int

Finds variable by name

get_float(self: pysmile.learning.DataSet, variable: int, record: int) -> float

Gets float value from dataset

get_int(self: pysmile.learning.DataSet, variable: int, record: int) -> int

Gets integer value from dataset

get_record_count(self: pysmile.learning.DataSet) -> int

Gets number of records

get_state_names(self: pysmile.learning.DataSet, variable: int) -> List[str]

Gets state names of a discrete variable

get_variable_count(self: pysmile.learning.DataSet) -> int

Gets number of variables

get_variable_id(self: pysmile.learning.DataSet, variable_index: int) -> str

Gets variable ID

is_discrete(self: pysmile.learning.DataSet, variable_index: int) -> bool
is_discrete(self: pysmile.learning.DataSet, variable_id: str) -> bool

Checks if a variable is discrete

is_missing(self: pysmile.learning.DataSet, variable: int, record: int) -> bool

Checks if a value is missing

match_network(self: pysmile.learning.DataSet, net: pysmile.Network) -> List[pysmile.learning.DataMatch]

Matches dataset to a network structure

read_file(self: pysmile.learning.DataSet, filename: str, missing_value_token: str, missing_int: int, missing_float: float, column_ids_present: bool) -> None
read_file(self: pysmile.learning.DataSet, filename: str, missing_value_token: str) -> None
read_file(self: pysmile.learning.DataSet, file_name: str) -> None

Reads dataset from file

read_pandas_dataframe(self: pysmile.learning.DataSet, *args, **kwargs) -> None

Reads data from a pandas DataFrame

set_float(self: pysmile.learning.DataSet, variable: int, record: int, value: float) -> None

Sets float value in dataset

set_int(self: pysmile.learning.DataSet, variable: int, record: int, value: int) -> None

Sets integer value in dataset

set_missing(self: pysmile.learning.DataSet, variable: int, record: int) -> None

Marks a value as missing

set_state_names(self: pysmile.learning.DataSet, variable: int, names: List[str]) -> None

Sets state names for a variable

write_file(self: pysmile.learning.DataSet, filename: str, separator: str, missing_value_token: str, column_ids_present: bool) -> None
write_file(self: pysmile.learning.DataSet, filename: str) -> None

Writes dataset to file