|
<< Click to Display Table of Contents >> Navigation: PySMILE reference > Learning > pysmile.learning.Validator |
add_class_node(self: pysmile.learning.Validator, node_handle: int) -> None
add_class_node(self: pysmile.learning.Validator, node_id: str) -> None
Adds class node to validator
get_accuracy(self: pysmile.learning.Validator, node_handle: int, outcome_index: int) -> float
get_accuracy(self: pysmile.learning.Validator, node_id: str, outcome_index: int) -> float
get_accuracy(self: pysmile.learning.Validator, node_handle: int, outcome_id: str) -> float
get_accuracy(self: pysmile.learning.Validator, node_id: str, outcome_id: str) -> float
Gets classification accuracy
get_calibration_curve_b(self: pysmile.learning.Validator, node_handle: int, outcome_index: int, bin_count: int) -> pysmile.learning.Curve
get_calibration_curve_b(self: pysmile.learning.Validator, node_id: str, outcome_index: int, bin_count: int) -> pysmile.learning.Curve
get_calibration_curve_b(self: pysmile.learning.Validator, node_handle: int, outcome_id: str, bin_count: int) -> pysmile.learning.Curve
get_calibration_curve_b(self: pysmile.learning.Validator, node_id: str, outcome_id: str, bin_count: int) -> pysmile.learning.Curve
Returns the calibration curve by binning for the specified node, outcome and bin count
get_calibration_curve_ma(self: pysmile.learning.Validator, node_handle: int, outcome_index: int, window_size: int) -> pysmile.learning.Curve
get_calibration_curve_ma(self: pysmile.learning.Validator, node_id: str, outcome_index: int, window_size: int) -> pysmile.learning.Curve
get_calibration_curve_ma(self: pysmile.learning.Validator, node_handle: int, outcome_id: str, window_size: int) -> pysmile.learning.Curve
get_calibration_curve_ma(self: pysmile.learning.Validator, node_id: str, outcome_id: str, window_size: int) -> pysmile.learning.Curve
Returns the calibration curve by moving average for the specified node, outcome and window size
get_confusion_matrix(self: pysmile.learning.Validator, node_handle: int) -> List[List[int]]
get_confusion_matrix(self: pysmile.learning.Validator, node_id: str) -> List[List[int]]
Gets confusion matrix
get_result_data_set(self: pysmile.learning.Validator) -> pysmile.learning.DataSet
Gets result dataset after validation
get_roc(self: pysmile.learning.Validator, node_handle: int, outcome_index: int) -> pysmile.learning.Curve
get_roc(self: pysmile.learning.Validator, node_id: str, outcome_index: int) -> pysmile.learning.Curve
get_roc(self: pysmile.learning.Validator, node_handle: int, outcome_id: str) -> pysmile.learning.Curve
get_roc(self: pysmile.learning.Validator, node_id: str, outcome_id: str) -> pysmile.learning.Curve
Returns the ROC curve for the specified node and outcome
k_fold(self: pysmile.learning.Validator, em: pysmile.learning.EM, fold_count: int, folding_rand_seed: int) -> None
k_fold(self: pysmile.learning.Validator, em: pysmile.learning.EM, fold_count: int) -> None
Performs k-fold cross-validation
leave_one_out(self: pysmile.learning.Validator, em: pysmile.learning.EM) -> None
Performs leave-one-out cross-validation
test(self: pysmile.learning.Validator) -> None
Tests the model on a dataset