<< Click to Display Table of Contents >> Navigation: Resources > References |
Bayes, Rev. Thomas (1702-1761). An essay toward solving a problem in the doctrine of chances (reprint). Biometrica, 45(3-4):293-315.
Castillo, E.F., J.M. Gutierrez, and A.S. Hadi (1997). Sensitivity analysis in discrete Bayesian networks, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 27, no. 4, pp. 412–423.
Charniak, Eugene (1991). Bayesian networks without tears. AI Magazine, 12(4):50-63.
Cheng, Jian & Marek J. Druzdzel (2000). AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research (JAIR), 13:155-188.
Cheng, Jie, David A. Bell & Weiru Liu (1997). An Algorithm for Bayesian Belief Network Construction from Data. Proceedings of AI & Statistics, pages 83-90.
Robert T. Clemen (1996). Making Hard Decisions: An Introduction to Decision Analysis, Second Edition. Duxbury Press
Cooper, Gregory F. (1988). A method for using belief networks as influence diagrams. Proceedings of the Workshop on Uncertainty in Artificial Intelligence, Minneapolis, Minnesota, 55-63.
Cooper, Gregory F. (1989). Current research directions in the development of expert systems based on belief networks. Applied Stochastic Models and Data Analysis, 5(1):39-52.
Cooper, Gregory F. (1990). The computational complexity of probabilistic inference using Bayesian belief networks. Artifical Intelligence, 42(2-3):393-405.
Cooper, Gregory F. & Edward Herskovits (1992). A Bayesian method for the induction of probabilistic networks from data, Machine Learning, 9(4):309-347.
Cowell, Robert G., A. Philip Dawid, Steffen L. Lauritzen & David J. Spiegelhalter (1999). Probabilistic Networks and Expert Systems. Springer-Verlag New York, Inc.: New York, NY.
Dagum, Paul & Michael Luby (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1):141-153.
Dawid, A. Philip (1979). Conditional independence in statistical theory. Journal of the Royal Statistical Society, Series B (Methodological), 41:1-31.
Dawid, A. Philip (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing, 2:25-36.
de Finetti, Bruno (1970). Theory of Probability. John Wiley and Sons, New York.
Dempster, A, N. Laird & D. Rubin (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 39, 1-38.
Diez, F. Javier (1993). Parameter adjustment in Bayes networks. The Generalized Noisy-OR gate. In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI-93), Morgan Kaufmann: San Mateo, CA, pages 99-105.
Diez, F. Javier & Marek J. Druzdzel (2006). Canonical probabilistic models for knowledge engineering. Technical Report CISIAD-06-01. UNED, Madrid, 2006 (available at http://www.ia.uned.es/~fjdiez/papers/canonical.html).
Druzdzel, Marek J. & Clark Glymour (1999). Causal inferences from databases: Why universities lose students. In Clark Glymour and Gregory F. Cooper (eds), Computation, Causation, and Discovery, Chapter 19, pages 521-539, AAAI Press, Menlo Park, CA.
Druzdzel, Marek J. & Henri J. Suermondt (1994). Relevance in probabilistic models: "backyards" in a "small world." In Working notes of the AAAI-1994 Fall Symposium Series: Relevance, New Orleans, LA, pages 60-63.
Druzdzel, Marek J. & Linda C. van der Gaag (2000). Building probabilistic networks: `Where do the numbers come from?' Guest editors' introduction. IEEE Transactions on Knowledge and Data Engineering, 12(4):481-486.
Eades, P. (1984). A heuristic for graph drawing. Congressus Numerantium, 41, page 149–160.
Friedman, Nir, Dan Geiger & Moises Goldszmidt (1997). Bayesian network classifiers. Machine Learning, 29, 131–163.
Fung, Robert & Kuo-Chu Chang (1990). Weighting and integrating evidence for stochastic simulation in Bayesian networks. In Henrion, M., Shachter, R.D., Kanal, L.N. & Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence 5. Elsevier Science Publishers B.V. (North Holland), pages 209-219.
Fung, Robert & Brendan del Favero (1994). Backward simulation in Bayesian networks. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann, San Francisco, CA, pages 227-234.
Heckerman, David & John S. Breese (1996). Causal Independence for Probability Assessment and Inference Using Bayesian Networks. IEEE Transactions on Systems, Man, and Cybernetics, 26:826-831.
Heckerman, David, Dan Geiger & David M. Chickering (1995). Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine Learning, 20, 197-243.
Heckerman, David, Abe Mamdani & Michael P. Wellman (1995). Real-world applications of Bayesian networks. Communications of the ACM, 38(3):24-26.
Heckerman, David & and Ross Shachter (1995). Decision-theoretic foundations for causal reasoning, Journal of Artificial Intelligence Research, 3:405-430.
Henrion, Max (1986). Uncertainty in artificial intelligence: Is probability epistemologically and heuristically adequate? In Jeryl Mumpower, Ortwin Renn, Lawrence D. Phillips & V.R.R. Uppuluri (eds.), Expert Judgment and Expert Systems, Proceedings of the NATO Advanced Research Workshop on Expert Judgment and Expert Systems, Porto, Portugal, Berlin, Germany: Springer Verlag, pages 105-129.
Henrion, Max (1988). Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In Lemmer, J.F. and Kanal, L.N. (eds.) Uncertainty in Artificial Intelligence 2. Elsevier Science Publishers B.V. (North Holland), pages 149-163.
Henrion, Max (1989). Some practical issues in constructing belief networks. Kanal, L.N., Levitt, T.S. & Lemmer, J.F. (eds.), Uncertainty in Artificial Intelligence 3. Elsevier Science Publishers B.V. (North Holland), pages 161-173.
Henrion, Max (1990). An introduction to algorithms for inference in belief nets. In Henrion, M., Shachter, R.D., Kanal, L.N. & Lemmer, J.F. (eds.), Uncertainty in Artificial Intelligence 5, Elsevier Science Publishers B.V. (North Holland), pages 129-138.
Henrion, M., John S. Breese & Eric J. Horvitz (1991). Decision analysis and expert systems. AI Magazine, 12(4):64-91.
Horvitz, Eric J., John S. Breese & Max Henrion (1988). Decision theory in expert systems and artificial intelligence. International Journal of Approximate Reasoning. 2(3):247-302.
Howard, Ronald A. & James E. Matheson (1984). Influence diagrams. In Howard, R. and Matheson, J., editors, Readings on the Principles and Applications of Decision Analysis, volume II, pages 721-762. Strategic Decision Group, Menlo Park, CA.
Huang, Cecil & Adnan Darwiche (1996). Inference in belief networks: A procedural guide. International Journal of Approximate Reasoning, 15:225-263.
Hulst, Joris (2006). Modeling physiological processes with dynamic Bayesian networks. M.Sc. thesis, Delft University of Technology, Delft, The Netherlands.
Jensen, Finn V. (1996). An Introduction to Bayesian Networks. Springer Verlag, New York.
Jensen, Finn V., Steffen L. Lauritzen & Kristian G. Olsen (1990). Bayesian updating in recursive graphical models by local computations. Computational Statisticals Quarterly, 4:269-282.
Kayaalp, Mehmet & Gregory F. Cooper (2002). A Bayesian Network Scoring Metric That Is Based on Globally Uniform Parameter Priors. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI-02), Morgan Kaufmann: San Mateo, CA, pages 251-158.
Kernighan, Brian W. & Dennis M. Ritchie (1988). The C Programming Language. Prentice Hall PTR, 2nd edition.
Kjærulff, Uffe & Linda C. van der Gaag (2000). Making Sensitivity Analysis Computationally Efficient. Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2000), pages 317-325.
Koiter, Joost R. (2006). Visualizing Inference in Bayesian Networks. M.Sc. thesis, Faculty of Electrical Engineering, Mathematics, and Computer Science, Department of Man-Machine Interaction, Delft University of Technology.
Kozlov, Alexander V. & Singh, Jaswinder Pal (1996). Parallel Implementations of Probabilistic Inference. IEEE Computer, pages 33-40.
Lauritzen, Steffen L. & David J. Spiegelhalter (1988). Local computations with probabilities on graphical structures and their application to expert systems (with discussion). Journal of the Royal Statistical Society, Series B (Methological), 50(2):157-224.
Lauritzen, S.L. (1995). The EM algorithm for graphical association models with missing data. Computational Statistics and Data Analysis 19. 191-201.
Lin, Yan & Marek J. Druzdzel (1997). Computational advantages of relevance reasoning in Bayesian belief networks. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-97), Morgan Kaufmann: San Mateo, CA, pages 342-350.
Lin, Yan & Marek J. Druzdzel (1998). Relevance-based sequential evidence processing in Bayesian networks. In Proceedings of the Uncertain Reasoning in Artificial Intelligence track of the Eleventh International Florida Artificial Intelligence Research Symposium (FLAIRS-98), Sanibel Island, Florida, pages 446-450. (An extended version of this paper will appear in the International Journal of Pattern Recognition and Artificial Intelligence.)
Lupinska-Dubicka, Anna (2014). Probabilistic Graphical Models of Time-Dependent Domains with Memory: Application to Monitoring Woman's Monthly Cycle. Doctoral dissertation, Faculty of Computer Science, Bialystok University of Technology, Poland.
Matzkevich, Izhar & Bruce Abramson (1995). Decision analytic networks in artificial intelligence. Management Science, 41(1):1-22.
Morgan, M. Granger & Max Henrion (1990). Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge University Press, Cambridge.
Murphy, Kevin P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning. Doctoral dissertation, University of California, Berkeley.
Neapolitan, Richard E. (1990). Probabilistic Reasoning in Expert Systems: Theory and Algorithms. John Wiley & Sons, New York.
Olmsted, S. (1983). On representing and solving decision problems. PhD thesis, Department of Engineering-Economic Systems, Stanford University.
Agnieszka Onisko (2003). Probabilistic Causal Models in Medicine: Application to Diagnosis of Liver Disorders. Ph.D. Dissertation, Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Science, Warsaw.
Onisko, Agnieszka, Marek J. Druzdzel & Hanna Wasyluk (2000). Extension of the Hepar II model to multiple-disorder diagnosis. In Intelligent Information Systems, M. Klopotek, M. Michalewicz, S.T. Wierzchon (eds.), pages 303-313, Advances in Soft Computing Series, Physica-Verlag (A Springer-Verlag Company), Heidelberg.
Onisko, Agnieszka, Marek J. Druzdzel & Hanna Wasyluk (2001). Learning Bayesian network parameters from small data sets: Application of Noisy-OR gates. International Journal of Approximate Reasoning, 27(2):165-182, 2001.
Onisko, Agnieszka & Marek J. Druzdzel (2013). Impact of precision of Bayesian networks parameters on accuracy of medical diagnostic systems. Artificial Intelligence in Medicine, 57(3):197-206.
Pearl, Judea (1986). Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29(3):241-288.
Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, Inc., San Mateo, CA.
Quinn, N.R., Jr & M.A. Breuer (1979). A force directed component placement procedure for printed circuit boards. IEEE Transactions on Circuits and Systems, CAS 26, pages 377–388.
Russell, Stuart J. & Peter Norvig (1995). Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs, NJ.
Savage, Leonard (1954). The Foundations of Statistics. Dover, New York.
Shachter, Ross D. (1986). Evaluating influence diagrams. Operations Research. 34(6):871-882.
Shachter, Ross D. (1988). Probabilistic inference and influence diagrams. Operations Research, 36(4):589-604.
Shachter, Ross D. & Mark A. Peot (1990). Simulation approaches to general probabilistic inference on belief networks. In Henrion, M., Shachter, R.D., Kanal, L.N. & Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence 5. Elsevier Science Publishers B.V. (North Holland), pages 221-231.
Shachter, Ross D. & Mark A. Peot (1992). Decision making using probabilistic inference methods. In Proceedings of the Eighth Annual Conference on Uncertainty in Artificial Intelligence (UAI-92), Morgan Kaufmann Publishers: San Francisco, CA, pages 276-283.
Simon, Herbert A. (1996). The Sciences of the Artificial. 3rd edition. MIT Press.
Spiegelhalter, David J., A. Philip Dawid, Steffen L. Lauritzen & Robert G. Cowell (1993). Bayesian analysis in expert systems. Statistical Science, 8(3):219-283.
Spirtes, Peter, Clark Glymour & Richard Scheines (1993). Causation, Prediction, and Search. Springer Verlag Lectures in Statistics.
Srinivas, Sampath (1993). A generalization of the Noisy-OR model. In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI-93), Morgan Kaufmann: San Mateo, CA, pages 208-215.
Voortman, Mark & Marek J. Druzdzel (2008). Insensitivity of constraint-based causal discovery algorithms to violations of the assumption of multivariate normality. In Recent Advances in Artificial Intelligence: Proceedings of the Twenty First International Florida Artificial Intelligence Research Society Conference (FLAIRS-2008), David Wilson, H. Chad Lane (eds), pages 690-695, Menlo Park, CA: AAAI Press.
Whittaker, Joe (1990). Graphical Models in Applied Multivariate Statistics. John Wiley & Sons, Chichester.
Yuan, Changhe & Marek J. Druzdzel. An Importance Sampling Algorithm Based on Evidence Pre-propagation. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI-03), Morgan Kaufmann: San Mateo, CA, pages 624-631.
Yuan, Changhe & Marek J. Druzdzel (2005). Importance sampling algorithms for Bayesian networks: Principles and performance. Mathematical and Computer Modeling, 43(9-10):1189-1207.
Yuan, Changhe & Marek J. Druzdzel (2006). Hybrid loopy belief propagation. In Proceedings of the Third European Workshop on Probabilistic Graphical Models (PGM-06), pages 317-324, Milan Studeny and Jiri Vomlel (eds.), Prague: Action M Agency.
Yuan, Changhe & Marek J. Druzdzel (2007). Generalized Evidence Pre-propagated Importance Sampling for Hybrid Bayesian Networks, In Proceedings of the Twenty-Second National Conference on Artificial Intelligence (AAAI-07), pages 1296-1302, Vancouver, British Columbia, Canada.
Yuan, Changhe, Tsai-Ching Lu & Marek J. Druzdzel (2004). Annealed MAP. In Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence (UAI-04), AUAI Press, Arlington, Virginia, pages 628-635.
Zagorecki, Adam T. (2010). Local Probability Distributions in Bayesian Networks: Knowledge Elicitation and Inference. Doctoral dissertation, School of Information Sciences, University of Pittsburgh.